Bowel Flora Protocol
Bowel flora play an important role in our ability to fight infectious disease, providing a front line in our immune defense, provide a passive mechanism to prevent infection, and produce many vitamins. Acid-producing lactobacilli and bifidobacteria increase the bioavailability of minerals, which require acid for absorption — calcium, copper, iron, magnesium, manganese. Without a healthy colony of bowel flora, we cannot expect robust health and wellbeing. The age-old naturopathic principle, start your treatment with the gut, has yet again been proven to hold much truth and value.
The gut flora can be seen as an integral part of our immune system, and can almost be considered an organ of the human body within its own right. It is speculated that when the bowel flora colonies become dysbiotic, autoimmune conditions such as inflammatory bowel disease can result. (Dysbiosis is abnormal microbial colonization of the intestine, where the changes in quality and/or quantity are pathological.)
Protocol Rationale: The Weed and Feed Theory
This program has been adapted from the protocol developed by herbalist Hein Zeylstra for the management of Crohn’s disease and ulcerative colitis.
Fasting: (Day 1): no food is allowed. Drink water. It is OK to continue regular medications.
Weed — Eradicate Dysbiotic Organisms using Garlic (Days 2-3): The main components of garlic are the sulfur compounds, including alliin. Allicin is produced from alliin (via the action of the enzyme allinase) when garlic is crushed or chopped. Allicin is rather unstable and decomposes further producing a range of compounds including diallyl sulfides, ajoenes and vinyldithiins. Allicin and its decomposition products are thought to be the major antimicrobial factors in garlic.
If fresh garlic is used in this protocol, it should be crushed first and taken with enough water to flush the garlic through the stomach quickly so the antimicrobial substances can act in the intestine. Enteric coated garlic tablets will ensure that the maximum potency of garlic is delivered to the site of dysbiosis.
Garlic was used in World War I as an anti-infective agent for various infectious intestinal diseases, including cases of cholera and dysentery. It also had a protective antibacterial effect: soldiers whose diet included garlic suffered less frequently from dysentery than those who did not eat garlic. In vitro and in vivo studies indicate that garlic has both antibacterial and antifungal activity, giving it broad spectrum antimicrobial activity in the GIT. Broad spectrum antimicrobials are best for weeding as they do not create imbalance in the microflora.
Other broad-spectrum antimicrobial herbs can be included in this phase. For example, pau d’arco is an herb which possesses a broad spectrum of antimicrobial activity, especially against protozoa and fungi, and appears to have a capacity to kill micro-organisms, rather than merely inhibit their growth. It consists of the inner bark of several species of Tabebuia, in particular T. avellanedae and T. ipe. Pau d’arco contains naphthoquinones, and while much research has focussed on lapachol, this particular compound is not the major naphthoquinone found in the inner bark. The compound of ß-lapachone is more important in the context of the use of the inner bark.
Step 2: Feed (Days 4-15)
Step 2a: Provide Prebiotic to Feed the Bowel Flora with Slippery Elm powder: The growth of endogenous beneficial bowel flora can be encouraged by administering prebiotics. Prebiotics are food for probiotics (beneficial bowel flora), and include herbs and foods containing mucilages, polysaccharides and fructooligosaccharides (FOS). FOS, otherwise referred to as fructans, are complex carbohydrates found in several common foods and a number of medicinal herbs. Foods containing FOS include Jerusalem artichokes, globe artichoke, onions, bananas, asparagus, leeks, garlic, wheat and barley. FOS taste sweet, however unlike sugar and starch, they add no calories to the diet because they are not digested or absorbed in humans. Inclusion of these in the diet can enhance GIT health by providing an energy source for bowel flora and thereby improve nutrient absorption and assist in reducing inflammation. FOS enhance mineral absorption and counteract the deleterious effects of phytic acids.
The most common mucilage-containing herb historically used for GIT disorders is slippery elm (Ulmus rubra). Slippery elm contains mucilage (a polysaccharide), starch and minerals. The main water-soluble polysaccharide is a linear polymer of galacturonic acid and rhamnose residues with side branches of galactose or 3-methyl-galactose. It is demulcent, emollient and nutrient and provides a simple physical soothing action.
Mucilaginous herbs will also encourage the growth of beneficial bowel flora and are more simple, clinically effective and inexpensive when compared to probiotic supplementation.
Step 2b: Inhibit the Regrowth of Pathogenic Flora: Use selective gastrointestinal antiseptics to restore normal bowel flora, such as green tea and grape seed extract. The use of polyphenols and oligomeric procyanidins from grape seed extract and green tea selectively inhibit the regrowth of pathogenic bowel flora. The addition of these herbs into step 2 of the protocol improves dysbiosis management, dramatically reduces flatulence and abdominal bloating, and provides powerful antioxidant activity.
Green tea and grape seed contain tannins which are defined as vegetable substances capable of tanning animal hides to produce leather. (This is used as a method to preserve the hide and at a molecular level is effected via the crosslinking of hide proteins by the tannins.) This definition is prescriptive and powdered hide is still used as a phytochemical test for tannins. Like flavonoids, tannins are polyphenolic compounds which have an affinity for proteins. However, the higher number of phenolic groups and the larger molecular size of tannins mean that they are capable of binding strongly to proteins at several sites and can precipitate them from solution.
The advantage of tannins is that they are poorly absorbed in the gastrointestinal tract. Hence, through their capacity to bind proteins, they can inhibit the growth of micro-organisms, especially in the colon. One of the most notable effects of tannins in the gut is their dramatic effect on diarrhea. It can be proposed that the effect of tannins is to produce a protective (if temporary) layer of coagulated protein on the mucosa along the upper levels of the gut wall, so numbing the sensory nerve endings and reducing provocative stimuli to additional peristaltic activity. Supporting this central astringent activity, tannins will also inhibit the viability of infecting micro-organisms, check fluid hypersecretion and neutralize inflammatory proteins. Because of their affinity for free protein, they will concentrate in damaged areas. Condensed tannins were able to bind to and inactivate the hypersecretory activity of cholera toxin. Hence tannins can help to improve gut wall integrity.
Tannins also can affect bowel flora composition. A methanol extract of
green tea was found to moderately enhance the growth of some bifidobacteria and selectively inhibit the growth of some clostridia in vitro.
The polyphenols containing gallate (such as epigallocatechin gallate) had the strongest activity.
Experimental in vivo studies have indicated that tea catechins improve intestinal flora.
Green tea (a rich source of tannins) appears to be much more potent as an antimicrobial agent than black tea. Bacillus subtilis, Escherichia coli, Proteus vulgaris, Pseudomonas fluorescens, Salmonella sp. and Staphylococcus aureus were used to test the antimicrobial activity of extracts of various tea products. Among the six test organisms, P. fluorescens was the most sensitive to the extracts, while B. subtilis was the least sensitive. In general, antimicrobial activity decreased when the extent of tea fermentation increased. The antimicrobial activities of extracts of tea products with different extents of fermentation also varied with test organisms. Green tea, the unfermented tea, exerted the strongest antimicrobial activity followed by the partially fermented tea products such as Longjing, Tieh-Kuan-Ying, Paochung, and Oolong teas. On the other hand, black tea, the completely fermented tea, showed the least antimicrobial activity.
Green tea catechin preparation was able to positively affect intestinal dysbiosis in nursing home patients by raising levels of lactobacilli and bifidobacteria, lowering levels of Enterobacteriaceae, Bacteroidaceae, and eubacteria, and decreasing odorous compounds. Levels of pathogenic bacterial metabolites were also decreased.
Day 1:
Prescribed medicines and supplements are to be taken as normal if the patient is currently on a protocol
Fasting — no food and plenty of water; if the patient cannot fast, recommend to eat light, fresh meals of vegetables and salads only.
No consumption of yeast, sugar or starches is essential. This includes fruits. Vegetable juices and broths are acceptable.
No alcohol or caffeine.
If cravings for carbohydrates are interfering with patient compliance, add Gymnema tablets (3 per day) into the protocol for blood sugar regulation.
Days 2 and 3:
Garlic: 1-2 fresh crushed cloves of garlic twice daily or 2 high quality, enterically-coated garlic tablets. If fresh garlic is used, it should be taken with a copious quantity of water. This has the effect of flushing the fresh garlic quickly into the small intestine.
Goldenseal could be taken here as well: 4 tablets containing at least 500 mg of root per day
Fasting is ideal; if the patient cannot fast, recommend very light, fresh meals of vegetables and salads.
No consumption of yeast, sugar or starches is essential. This includes fruits and fruit juices. Vegetable juices and broths are acceptable.
No alcohol or caffeine.
Days 4-15:
Slippery elm powder: 1-2 heaped teaspoons of slippery elm powder with copious (240 mL) water, to allow it to swell in the GIT.
Herbal antioxidant (green tea, grape seed extract, turmeric, rosemary): 2 tablets at night before bed or on an empty stomach, at least 2 hours away from food
Gradually introduce clean, fresh foods
Daily consumption of green tea
Day 16: Repeat protocol for another 14 days cycle if desireed.